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Ionization Loss of Charged Particles in 
Matter 

• Bethe-Bloch Equation… Coulomb interaction with 
the electrons in the atoms 



13.1 Photons in matter 
(Overview) 

• Rayleigh scattering  
– Coherent, elastic scattering of the entire atom (the blue sky) 
– g + atom  g + atom 
– dominant at lg>size of atoms 

• Compton scattering 
– Incoherent scattering of electron from atom  
– g + e-

bound  g + e-
free  

– possible at all Eg > min(Ebind) 
– to properly call it Compton requires Eg>>Ebind(e

-) to approximate free e- 

• Photoelectric effect 
– absorption of photon and ejection of single atomic electron 
– g + atom  g + e-

free + ion 
– possible for Eg < max(Ebind) + dE(Eatomic-recoil, line width) (just above k-edge) 

• Pair production 
– absorption of g in atom and emission of e+e- pair 
– Two varieties: 

• g + nucleus  e+ + e- + nucleus (more momentum transfer to nucleusdominates) 
• g + Z atomic electrons  e+ + e- + Z atomic electrons 
• both summarised via: g + g(virtual)  e+ + e- 

– Needs Eg>2mec2 

– Nucleus has to recoils to conserve momentum  coupling to nucleus needed  strongly Z-
dependent crossection 

 



Electromagnetic Interactions in Matter 
 

• R  Rayleigh 

• PE  Photoeffect 

• C  Compton 

• PP  Pair Production 

• PPE  Pair Production on atomic electrons 

• PN  Giant Photo-Nuclear dipole resonance 

Carbon 

Lead 

Photons 
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13.1 Photons in matter 
(Note on Pair Production) 

• Compare pair production with Bremsstrahlung 

• Very similar Feynman Diagram 

• Just two arms swapped 

 

Typical Lenth = 
Radiation Length 
X0 

Typical Lenth = 
Pair Production  
Length L0 
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Electromagnetic showers 

(A) Bremsstrahlung 
radiation of real photons in theCoulomb field of  nuclei 
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cloud chamber with lead absorbers 

(B) Pair production 
needs additional mass for momentum conservation 

Moliere radius 



Electromagnetic Shower 



Electromagnetic showers 
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The shower development is a statistical process. 

Energy resolution 

α - Active sampling wrt total detector volume 
β - Uniformity of the detector, non-linearities 

Energy loss of electrons in lead 







 







16 PHENIX environment 
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Piston hole 
41.3 cm long 
22.5 cm radius 

Flange 

Bellows 

Manifolds 

Space in muon piston holes! 



PbWO4 (Lead Tungstate, PWO) 

Density 8.28 g/cm3 

Size 2.2 x 2.2 x 18 cm3 

Length 20 X0, 0.92 l 

Weight 721.3 g 

Moliere radius 2.0 cm 

Radiation Length 0.89 cm 

Interaction Length 22.4 cm 

Light Yield ~10 p.e./MeV @ 25 C 

Temp. Coefficient -2% / C 

Radiation Hardness 1000 Gy 

Main Emission Lines 420-440, 500 nm 

Refractive Index 2.16 
about 50 years in PHENIX 
forward directions 



Avalanche photodiodes? 
Even small PMTs are sensitive to magnetic fields or expensive 

(500 – 5000 gauss longitudinally in piston holes) 

PIN diodes 
in reverse bias mode  depleted i-layer 

Large reverse bias voltage: 
e- acceleration 
 collisions with electrons 
avalanche multiplication 
avalanche leaves the active area 
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Test beam measurements 
MTBF @ FNAL 

Test beam from 4 GeV/c to 120 GeV/c 

Pion or electron tune 

Electron / hadron ID in RICH 

Al target 
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FermiLab Test Beam Results 
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The MPC: 3.1 < | η | < 3.8 

 



MPC History           South          
North 

New Detector: 

220 Towers 

Initial Installation 

192 Towers 

Upgrade: 

196 Towers 

New Monitoring 

System (N+S) 

Run 06, pp: 200, 62 GeV 

Run 07, AA: 200 GeV 

Run 08, dA, pp: 200 GeV 
Light Calibration Box 



North MPC 

MPC Limitation 

• ID 0s up to E ~ 20 GeV with MPCs 
(3.1 < |h| < 3.8)  
– Limitations: tower separation and merging effects 

– Use 0s for 7 GeV < E < 22 GeV 

  pT max ~ 2 GeV/c 

• Single Clusters for E > 15 GeV 
– Dominated by 0 (~ 85%) 

– Access higher pT  
 

0
gg 

Merged 

0
gg 



Single Cluster Asymmetry 
Cluster Decomposition: Dominated by merged π0’s.  

 Process decomposition skewed more heavily toward quark-gluon than 
mid-rapidity. 

 Rel lumi uncertainty is significant compared to statistical. 

pT (GeV/c)   2              3 pT (GeV/c)   2              3 



“Albedo” 

MPC is in a very messy environment!  Over a radiation length in front of it. 



Reconstruction Algorithm (AN949) 
• Basic idea: EMCal clusters = local maxima + 

surrounding towers 

• Use log-weighted positions (weight is 4 + ln(Ei/Etot) ) 

• Adapted existing EMCal code to MPC 

• Parameterize shower shape and fluctuations from 

simulation (matches beam test well) 

 

R 

Etower/Ecluster vs R 

R = distance from tower center to cluster center 



MPC Energy Response 

• MPCs sit directly behind the BBCs (see 

shadow below from E = 20 GeV single 

photons run through GEANT) 

(Eprimary –  Emeasured) / Eprimary Emeasured / Eprimary 

Emeasured 



MPC Gain Drop During Run 

• PbWO4 and APD gains both sensitive to temperature 
• PbWO4 suffers massive radiation damage 

– Recovers partially between runs 

• APD also suffers neutron damage – not recoverable 
• LED essential to correcting for this gain drop and fluctuations in gain 

TEMP 
BLUE LED 
RED LED 



Calibrations (our 3rd iteration) 
• Use Minimum ionizing particles 

as first calibration (MIPs deposit 
0.234 GeV/tower) 
– Also can use inverse slopes 

 

 

• Correct time-dependence with 
LEDs (40% over 2008 d+Au, 
p+p runs) 

 

 

• Use iterative 0 calibration 
– Match p+p pythia  GEANT 

simulation masses in each tower 

 Tower by tower 0 

mass peaks 

time 

2008 Led variation vs time 

MIP 

peak 

Charge A.U. 

AN927 



Tests of Calibration: h and 0 mesons 

Minv (GeV/c2) Minv (GeV/c2) 

d+Au 

Epair > 30 GeV 

p+p 

Epair > 30 GeV 

Calibration 

error is ~ 4% 



Tests of Simulation 

• Simulation should match the data if one wants to 
use the simulation for correction factors 

• North MPC, Run08 p+p 



Understanding the Invariant Mass Spectra 

 Developed tools to 
understand invariant mass 
spectra 

 Track energy depositions 
for all particles into 
clusters 

 Tracking available in 
mpcClusterContentV2 

 

2 embedded p+p Pythia events  PISA DST 

 Pair Foreground 

 Mixed event BG 

 “Tracked” BG 

 

 



Cross-sections at RHIC, Forward Rapidities 
BRAHMS Preliminary 

•Cross-sections generally described well by NLO pQCD 
at s = 200 GeV and forward rapidities 
•Are we in a situation where in unpolarized the theory 
is relatively well understood, but the polarized gives 
surprises? 

•Potentially we are in a region where the 
polarized data gives us new information about 
QCD, in a region where one can have quantitative 
theoretical understanding of the effects, and not 
just phenomenology. 
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MPC Performance 

North MPC 

Decay photon impact positions for 
low and high energy 0s. The decay 
photons from high energy 0s merge 
into a single cluster 

Clusters  80% 0 (PYTHIA) 

“Trigger” 
Near 

Far 

Jet1 

Jet2 



Upgraded Electronics in Run12 

• New electronics in Run12 (HBD ADC boards) 
• Digital trigger 

• pT threshold 
• Online gain corrections 
• Remove single tower backgrounds 

• Measure energy beyond ADC saturation 
• Controls pileup effects 



Trigger on Di-hadrons 

• MPC now has 6 independent fully digital trigger calculations, 
arranged azimuthally 

• Easy to select for di-hadrons → Increased rejection power 

• Allows us to maximize our data purity 

• Constrain ΔG at low-x, and with less inclusive probe. 

π0-π0 
Beam 



First Forward Measurement of ALL  
 

•High pT EM Cluster Asymmetry, forward pseudo-rapidity 3.1<|η|<3.9 
• >80% Merged π0 

 
•510 GeV Datasets: Run09, Run11, Run12, Run13 

•Run12 and Run13 use new MPC electronics with ~4x higher purity 

max signal expected 

0 0 
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Run12, Run13 Projections 

RHIC Run12 RHIC Run13 

DSSV best fit 
DSSV 2/2=-2% 

•Projected error bars around dALL ~ 10-4 
•From real data, with new MPC Trigger Electronics 
•Relative Luminosity Analysis still in progress 

P=50% P=40% 
P=50% 



Can Clusters be Used? 

1. Assign a systematic error 
• We have a good idea about the particle type composition 

• Be nice to measure eta’s and direct photons separately.  Pi-zero’s 
already measured by STAR. 

• We can then calculate what kind of an effect these have on the A_LL 
given certain assumptions about dG 

• Derive a conservative systematic error based on that 
 

2. Try to correct back to pi-zero’s 
• Similar to above, but we also apply a correction based on some 

assumed dG, and assign systematic errors to the uncertainty in that 
correction. 
 

3. Give the theorists our acceptance and efficiency for each particle type 
• With this information they can run this acc*eff filter through their 

analysis. 


